
We completed the spring bioassay ($4^{th}-8^{th}$ May) in the three lake locations and started the nutrient dilution bioassays yesterday (27^{th} May). To date, we have completed four of the five bioassays with the last bioassay (early summer) scheduled for June 15^{th} . We are adding a zooplankton addition trial to the early summer bioassay. We added N₂ fixation rates to all 2020 bioassays.

Rain Body West Qain Body East Utah Lake Govo B. **Figure 1** The ratio of N and P delta R limitation response (log₁₀ ratio of a given nutrient treatment growth relative to the control per day) for combined chlorophytes (including Cyanobacteria and a limited number of diatoms, Chlorophyll-a = Exo sonde measurement) cyanobacteria (Phycocyanin = Exo sonde measurement). Values above 1 (dashed gray line) indicate increasing N limitation and values below the line indicate an increasing P limitation.

Findings Similar to other shallow lake systems, chlorophytes and to a lesser extent Cyanobacteria in the East and West location of Utah Lake transitioned from being P-limited earlier in the HAB season to N-limited later in the season.

	EAST						WEST					PROVO BAY						
	counts (#)	richness = 18				counts (#)	richness = 15				_	counts (#)	richness = 12					
Species		SP	ES	S	LS	F		SP	ES	S	LS	F		SP	ES	S	LS	F
Aphanizomenon flosaquae	47,463-234,076						5,466-81,833						100,476-344,058					
Aphanocapsa grevillei	728																	
Aphanocapsa holsatica	3,528																	
Aphanocapsa planctonica	1,568-10,662						314-627											
Aphanocapsa species	2,394-10,591						532-8,512						1,862-46,075					
Calothrix species	157																	
Chroococcus species							62											
Chrococcus dispersus													3,240					
Chroococcus limeticus	101												101					
Coelosphaerium species							45						1,440					
Cyanodictyon planctonicum	336-2,688						2,520						2,700-54,000					
Dolichospermum circinalis	645-74,650						946-3,830						1,125-630,157					
Dolichospermum species													6,413					
Gomphosphaeria aponina	5,018																	
Leptolyngbya species	3,928-9,565						3,007						7,515-17,763					
Merismopedia glauca	3,472-48,288						5,555						6,535-65,596					
Microcystis aeruginosa	686						392											
Microcystis species	2,688-3,584						6,272						12,600					
Phormidium species	1,456-2,058						2,464						1,456-12,555					
Phormidium species 3	168-8,623																	
Planktothrix species	826-19,936						9,390-15,680						5,376-36,000					
Pseudanabaena species	162-1,217						324-1,966						1,620-3,035					
Snowella lacustris	784						2,867											

Table 1. Seasonal shifts in Cyanobacterial species by out three locations. Seasonal abbreviations include spring = SP, early summer = ES, summer = S, late summer = LS, and fall = F. Data and counts are from Utah Division of Water Quality for years 2018-2019.

RFP: UTAH LAKE SEDIMENT CALCITE PHOSPHORUS BINDING

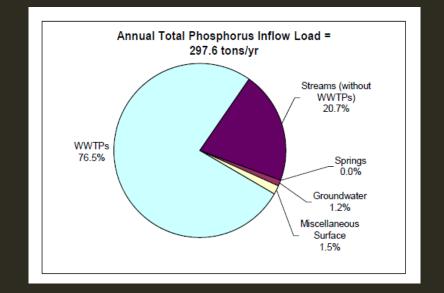
Utah Lake Water Quality Study Science Panel Webshop May 28, 2020

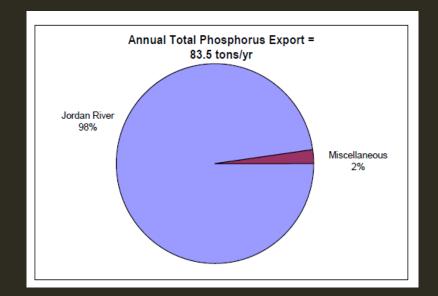
GOALS

• Review Calcite-P RFP

• Obtain feedback to continue development

PHOSPHORUS BINDING IN UTAH LAKE


Utah Lake retains large majority of external P loads

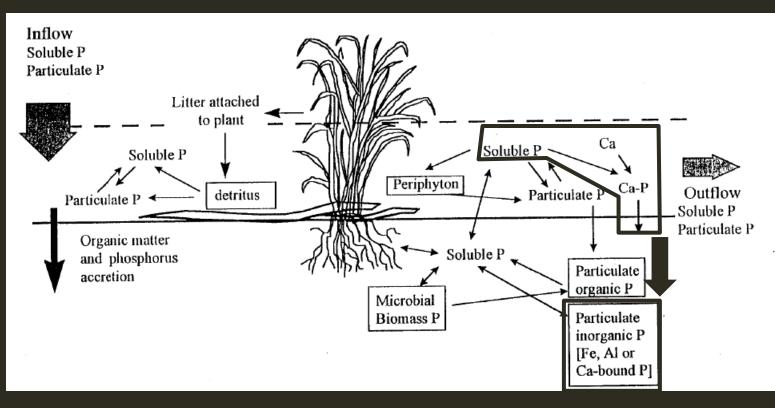

Mechanism: P uptake by sediments

Sorption of P onto various cations

[–] Acidic: Al and Fe

⁻ Alkaline: Ca and Mg

CALCITE BINDING

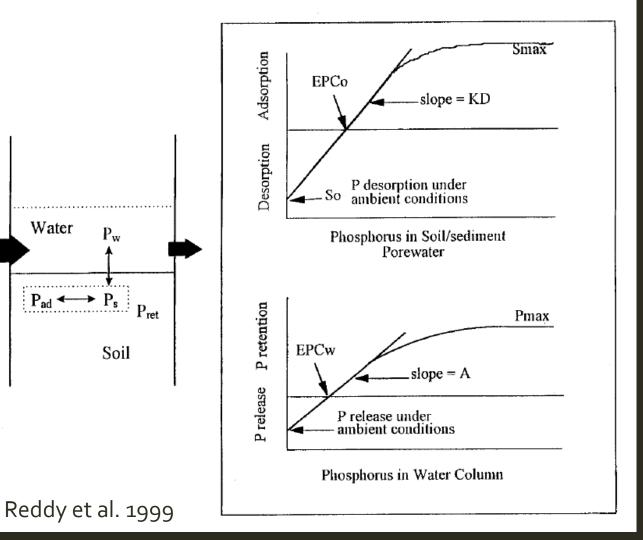

P adsorbs to calcite \rightarrow precipitates

Favorable conditions

- [–] High pH
- [–] High [Ca²⁺]
- [–] High [P]

Inorganic reaction, but PP and R affect pH

May be semi-permanent sink in lakes with high Ca and alkalinity


Reddy et al. 1999

SEDIMENT-WATER EQUILIBRATION

Utah Lake sediments may change from sink to source in response to lowered P loads

- Timescale of equilibration depends on
- Gradient in water vs. sediment
- Amount and chemical forms of P

Needs: characterize quantities and mechanisms of P binding

RFP OBJECTIVES

- 1. Quantify the importance of calcite binding as a P sink
- 2. Parse the mechanisms of sediment P binding (and release)
- 3. Define the environmental conditions under which calcite binding is favorable, including the spatial and temporal extent of these conditions
- 4. Characterize the amount and chemical forms of water column and sediment P, including bioavailable and mineral bound forms
- 5. Measure the bioavailability of P forms in the water column
- 6. Predict the impact of changing P inputs on the binding and release of sediment P

RFP TASKS

- 1. Review existing literature and data
- 2. Analyze existing data
- 3. Develop sampling and analysis plan (SAP)
- 4. Experiments with sediment cores and/or mesocosms
- 5. Algal assays for P bioavailability
- 6. Quantify role of calcite P binding in Utah Lake
- 7. Prepare technical report

Scope of Work: Utah Lake Sediment Calcitephosphorus binding

1 Introduction

The Utah Department of Environmental Quality, Division of Water Quality (DWQ) is requesting grant proposals for technical support to conduct a sediment study to help understand the role of calcite binding on the uptake and release of phosphorus (P) by sediments in Utah Lake. This study was prioritized for 2020 by the Utah Lake Water Quality Study (ULWQS) Science Panel. The target completion date of this scope is TBD.

Please submit a grant proposal including a cost proposal to <u>Emily Canton at ercanton@utah.gov</u> by <u>TBD</u>. Proposals must be limited to 10 pages; this page limit does not include resumes and project case studies that may be included in an appendix.

2 Background

The Utah Division of Water Quality (DWQ) is in Phase 2 of the Utah Lake Water Quality Study (ULWQS) to evaluate the effect of excess nutrients on the lake's recreational, aquatic life, and agricultural designated uses and to develop site-specific nitrogen and phosphorus water quality criteria to protect these uses. The ULWQS is guided by the <u>Stakeholder Process</u> (Attachment A) developed during Phase 1, which established a 16-member interest-based Steering Committee and a 10-member disciplinary-based Science Panel. The Steering Committee has charged the Science Panel with developing and answering <u>key questions</u> to characterize historic, current, and future nutrient conditions in Utah Lake (Attachment B). Responses to the key questions will be used by the Steering Committee to establish management goals for the lake and by the Science Panel to guide development of nutrient criteria to support those goals.

Additionally, the Science Panel must complete a significant number of tasks to achieve its purpose of guiding the development of nutrient criteria as described in Attachment C including:

- Guiding the approach for establishing nutrient criteria
- Recommending and guiding studies to fill data gaps needed to answer key questions
- Interpreting and integrating study results into the rationale for nutrient criteria
- Guiding development of an approach for characterizing uncertainty
- Recommending science-based nutrient criteria to the Steering Committee

UTAH DIVISION OF WATER QUALITY

UTAH DIVISION OF WATER QUALITY

- Recommending science-based nutrient criteria to the Steering Committee
- Guiding development of an approach for characterizing uncertainty
- Interpreting and integrating study results into the rationale for nutrient criteria
- Recommending and guiding studies to fill data gaps needed to answer key question.
- Guiding the approach for establishing nutrient criteria

guiding the development of nutrient criteria as described in Attachment C including:

RFP TASKS: OVERLAPS WITH PALEOLIMNOLOGICAL STUDY

- 1. Review existing literature and data (*Paleo: M. DeveyThesis*)
- 2. Analyze existing data
- 3. Develop sampling and analysis plan (SAP)
- 4. Experiments with sediment cores and/or mesocosms (*Paleo: Calcite P binding experiments; Sediment characterization*)
- 5. Algal assays for P bioavailability
- 6. Quantify role of calcite P binding in Utah Lake (Paleo: Reconstructing Ca-binding)
- 7. Prepare technical report

 \rightarrow Potential to expand Janice Brahney's work and/or delay RFP to incorporate results

OUTSTANDING QUESTIONS

How can this RFP be amended (focus, timeline) to take advantage of paleo study?

Should the scope be broadened to address other P binding mechanisms? (Potential opportunity: evaluate additional pathways \rightarrow holistic picture of P binding and release)

Does the RFP adequately address the forms of P in the water column and sediment?

STRATEGIC RESEARCH PLAN

Utah Lake Water Quality Study Science Panel Call May 28, 2020

GOALS

O Update on SRP development, next steps and timeline
O Get any/all feedback on proposed projects/content

Utah Lake Water Quality Study— Strategic Research Plan DRAFT

May 22, 2020 Version 4.1

PRESENTED TO

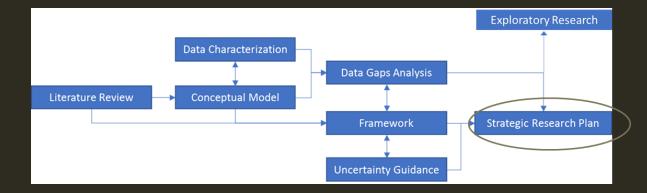
PREPARED BY

Utah Department of Environmental Quality Division of Water Quality PO Box 144870 Salt Lake City, UT 84114 **Tetra Tech** 1 Park Drive, Suite 200 Research Triangle Park, NC 2709

STRATEGIC RESEARCH PLAN: PAST AND PRESENT

- Workplan (Task 6)
- Develop SRP to:
 - \odot Fill knowledge gaps
 - Identify studies to address initial charge questions and strengthen conceptual model
 - \odot Include problem statement, objectives and approaches
- Exploratory Research Plan: First three RFPs ignite research actions
- SRP: Current RFPs (Littoral Sediment, CNP Budgets and Calcite P) and Future Work

RESEARCH PLAN REMINDER


Introduction: Process, ongoing research

 Mapped charge questions and NNC development needs to existing work

• Summarized research needs

○ Laid out research priorities

○ Voted to rank — then moved to RFPs

	Questions	Being addressed		
	. What does the diatom community and macrophyte community in the paleo cord tell us about the historical trophic state and nutrient regime of the lake?	Partially		
	i. Can diatom (benthic and planktonic) and/or macrophyte extent or presence be detected in sediment cores? And if so, what are they?	Paleo RFP		
	ii. What were the environmental requirements for diatoms and extant macrophyte species?	No		
	iii. How have environmental conditions changed over time?	Data analysis		
	2. What were the historic phosphorus, nitrogen, and silicon concentrations as picted by sediment cores? (add calcium, iron, and potentially N and P isotopes)	Paleo RFP		
tra pro	B. What information do paleo records (eDNA/scales) provide on the population jectory/growth of carp over time? What information do the paleo records ovide on the historical relationship between carp and the trophic state and trient regime of the lake?	No		
	I. What do photopigments and DNA in the paleo record tell us about the torical water quality, trophic state, and nutrient regime of the lake?	Paleo RFP		

RFP DEVELOPMENT

• Littoral Sediment C, N and P stock and flux

• C, N, and P mass balance: external and internal

○ Calcite – P binding

N-fixation – working with Aanderud lab

Scope of Work: Utah Lake Littoral Sediment Study

1 Introduction

The Utah Department of Environmental Quality, Division of Water Quality (DWQ) is requesting grant proposals for technical support to conduct a littoral sediment study to help understand effects of drying/wetting on Carbon (C), Nitrogen (N) and Phosphorus (P) flux from littoral sediments in Utah Lake. This study was prioritized for 2020 by the Utah Lake Water Quality Study (ULWQS) Science Panel. The target completion date of this scope is **May 30, 2021**.

Please submit a grant proposal including a cost proposal to <u>Emily Canton at <u>ercanton@utah.gov</u> by <u>TBD</u>. Proposals must be limited to 10 pages; this page limit does not include resumes and project case studies that may be included in an appendix.</u>

2 Background

The Utah Division of Water Quality (DWQ) is in Phase 2 of the Utah Lake Water Quality Study (ULWQS) to evaluate the effect of excess nutrients on the lake's recreational, aquatic life, and agricultural designated uses and to develop site-specific nitrogen and phosphorus water quality criteria to protect these uses. The ULWQS is guided by the <u>Stakeholder Process</u> (Attachment A) developed during Phase 1, which established a 16-member interest-based Steering Committee and a 10-member disciplinary-based Science Panel. The Steering Committee has charged the Science Panel with developing and answering <u>key questions</u> to characterize historic, current, and future nutrient conditions in Utah Lake (Attachment B). Responses to the key questions will be used by the Steering Committee to establish management goals for the lake and by the Science Panel to guide development of nutrient criteria to support those goals.

Additionally, the Science Panel must complete a significant number of tasks to achieve its purpose of guiding the development of nutrient criteria as described in Attachment C including:

- Guiding the approach for establishing nutrient criteria
- Recommendig and guiding studies to fill data gaps needed to answer key questions

UTAH DIVISION OF WATER QUALITY

UTAH DIVISION OF WATER QUALITY

Guiding the approach for establishing mutrient criteria
 Recommendig and guiding studies to fill data gaps needed to answer key questions

Additionally, the Science Panel must complete a significant number of tasks to achieve its purpose guiding the development of nutrient criteria as described in Attachment C including:

criteria to support those goals.

In Club Lake Colorationant ID. Responses to the lay questions will be used by the Steering Committee to establish management goals for the lake and by the Science Panel to guide development of mitrient

5

PROCESS TO FINALIZE

• Complete identifying projects (DONE)

• Draft RFP elements (DONE)

We fill out RFP components – iterate with you
 SP Finalizes RFPs (Littoral, CNP done; Calcite doing)
 SP Finalizes SRP (This effort)

Complete RFPs/SRP

- RFPs to SC for approval (Littoral, CNP done, Calcite doing)
- RFPs out for bid (Littoral CNP soon, Calcite later)
- SRP to SC for approval (Summer)

Utah Lake Water Quality Study— Strategic Research Plan DRAFT

May 22, 2020 Version 4.1

PRESENTED TO

Utah Department of Environmental Quality Division of Water Quality PO Box 144870 Salt Lake City, UT 84114

PREPARED BY

Tetra Tech 1 Park Drive, Suite 200 Research Triangle Park, NC 2709

REMAINING PRIORITIES

 Remember our priorities – we've pursued RFPs for the highest priority elements and littoral sediments

\odot The rest?

 \odot Wanted to "close the loop" on the remainder within the SRP

 As a reference for future RFP planning and development

	Research ideas	Mean Ranking - Feb 2020	
1	How large is internal vs external loading (how long would recovery take?)	2.3	k
2	Sediment budgets (C, N, and P; nutrient flux chambers)	3.6	k
3	Calcite scavenging (how bioavailable is SRP – does bioassay address?)	4.3	
4	Adding modules to the WQ models (sediment diagenesis, calcite scavenging)	4.3	
5	Carp effects on nutrient cycling	7.3	
6	Lake level (effect on macrophytes)	9.2	
7	Bioassays that incorporate sediment (next phase mesocosms)	9.4	
8	Macrophyte recovery potential (Provo Bay demo)	10.0	
9	Lake-level effects on biogeochemistry and nutrient cycling	10.2	k
10	Environmental controls on toxin production	11.1	
11	Turbidity effect on primary producers	11.2	
12	Resuspension rates from bioturbation	11.7	
13	Carp effects on zooplankton (and does this influence algal response)	11.8	
14	Carp effects on macrophytes	12.1	
15	Toxin Production and N Species	13.7	
16	Recreational surveys	13.8	
17	Macrophyte role (to biogeochemistry)	14.0	
18	Additional atmospheric deposition data	14.6	
19	Alternative models (PCLake – cyano/macrophyte state change)	14.9	

SRP SECTION 4.2 — SPECIFIC RESEARCH PROJECTS

- Lays out strategic research elements for the 19 research priorities
 - Problem Statement
 - \odot Existing Data and Information
 - \circ Objectives
 - Expected Outcome/Outputs
 - <u>Capacity to Address with Mesocosms</u>

• Does not include approach – to be determined when they become future RFPs

MESOCOSM OPPORTUNITIES

- Mesocosms could address many areas
 - $\,\circ\,$ Calcite Binding
 - Carp Effects turbidity, zooplankton, macrophytes
 - Macrophyte recovery/effects turbidity, biogeochemistry
 - \circ Lake Level
 - Bioassay Gen 2
 - Turbidity effects on primary producers
 - \odot Toxin controls
- \odot To help with TSSD planning

• Highlighted in SRP

NEXT STEPS: FINALIZING SRP

- Review SRP (Section 4.2 especially)
- Captured all the priorities?
- O Characterized elements correctly?
- Provide a Record for future RFP planning and development